Synthetic aperture imaging using sources with finite aperture: deconvolution of the spatial impulse response
A method for ultrasonic synthetic aperture imaging using finite-sized transducers is introduced that is based on a compact, linear, discrete model of the ultrasonic measurement system developed using matrix formalism. Using this model a time-domain algorithm for deconvolution of the transducer'...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2003-07, Vol.114 (1), p.225-234 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method for ultrasonic synthetic aperture imaging using finite-sized transducers is introduced that is based on a compact, linear, discrete model of the ultrasonic measurement system developed using matrix formalism. Using this model a time-domain algorithm for deconvolution of the transducer's spatial impulse responses (SIRs) is developed that is based on a minimum mean square error (MMSE) criterion. The algorithm takes the form of a spatiotemporal filter that compensates for the SIRs associated with a finite-sized transducer at every point of the processed image. A major advantage of the proposed method is that it can be used for any transducer, provided that its associated SIRs are known. This is in contrast to the synthetic aperture focusing technique (SAFT), which treats the transducer as a point source. The performance of the method is evaluated with simulations and experiments, performed in water using a linear phased array. The results obtained using the proposed method are compared to those obtained with a classical time-domain SAFT algorithm. For a finite aperture source, it is clearly shown that the resolution obtained using the proposed method is superior to that obtained using the SAFT algorithm. |
---|---|
ISSN: | 0001-4966 1520-8524 1520-8524 |
DOI: | 10.1121/1.1575746 |