Rapid Regulation of Light Harvesting and Plant Fitness in the Field
We used Arabidopsis thaliana mutants to examine how a photosynthetic regulatory process, the qE-type or ΔpH-dependent nonphotochemical quenching, hereafter named feedback de-excitation, influences plant fitness in different light environments. We show that the feedback de-excitation is important for...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2002-07, Vol.297 (5578), p.91-93 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We used Arabidopsis thaliana mutants to examine how a photosynthetic regulatory process, the qE-type or ΔpH-dependent nonphotochemical quenching, hereafter named feedback de-excitation, influences plant fitness in different light environments. We show that the feedback de-excitation is important for plant fitness in the field and in fluctuating light in a controlled environment but that it does not affect plant performance under constant light conditions. Our findings demonstrate that the feedback de-excitation confers a strong fitness advantage under field conditions and suggest that this advantage is due to the increase in plant tolerance to variation in light intensity rather than tolerance to high-intensity light itself. |
---|---|
ISSN: | 0036-8075 1095-9203 1095-9203 |
DOI: | 10.1126/science.1072359 |