Cauchy Problems for Discrete Holomorphic Functions

We solve Cauchy problems for discrete holomorphic functions defined on the Gaussian integers, which leads to the existence of discrete holomorphic functions with arbitrarily fast growth. This proves that certain classes of functions are closed in the sense of mathematical morphology.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2021-02, Vol.15 (1), Article 3
1. Verfasser: Kiselman, Christer Oscar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We solve Cauchy problems for discrete holomorphic functions defined on the Gaussian integers, which leads to the existence of discrete holomorphic functions with arbitrarily fast growth. This proves that certain classes of functions are closed in the sense of mathematical morphology.
ISSN:1661-8254
1661-8262
1661-8262
DOI:10.1007/s11785-020-01025-y