Long-bone development and life-history traits of the Devonian tristichopterid Hyneria lindae

Hyneria lindae is one of the largest Devonian sarcopterygians. It was found in the Catskill Formation (late Famennian) of Pennsylvania, USA. The current study focuses on the palaeohistology of the humerus of this tristichopterid and supports a low ossification rate and a late ossification onset in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth and environmental science transactions of the Royal Society of Edinburgh 2019-03, Vol.109 (1-2), p.75-86
Hauptverfasser: KAMSKA, Viktoriia, DAESCHLER, Edward B., DOWNS, Jason P., AHLBERG, Per E., TAFFOREAU, Paul, SANCHEZ, Sophie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyneria lindae is one of the largest Devonian sarcopterygians. It was found in the Catskill Formation (late Famennian) of Pennsylvania, USA. The current study focuses on the palaeohistology of the humerus of this tristichopterid and supports a low ossification rate and a late ossification onset in the appendicular skeleton. In addition to anatomical features, the large size of the cell lacunae in the cortical bone of the humerus mid-shaft may suggest a large genome size and associated neotenic condition for this species, which could, in turn, be a partial explanation for the large size of H. lindae. The low metabolism of H. lindae revealed here by bone histology supports the hypothesis of an ambush predatory behaviour. Finally, the lines-of-arrested-growth pattern and late ossification of specimen ANSP 21483 suggest that H. lindae probably had a long juvenile stage before reaching sexual maturity. Although very few studies address the life-history traits of stem tetrapods, they all propose a slow limb development for the studied taxa despite different ecological conditions and presumably distinct behaviours. The bone histology of H. lindae would favour the hypothesis that a slow long-bone development could be a general character for stem tetrapods.
ISSN:1755-6910
1755-6929
1755-6929
DOI:10.1017/S175569101800083X