On potentials and limitations of perfusion MRI in neurological disorders
Cerebral perfusion outlines several parameters which describe the status of cerebral haemodynamics. Numerous neurological diseases affect cerebral perfusion, thus the importance of diagnostic measurements. Perfusion magnetic resonance imaging (MRI) is a collection of non-ionizing magnetic resonance-...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cerebral perfusion outlines several parameters which describe the status of cerebral haemodynamics. Numerous neurological diseases affect cerebral perfusion, thus the importance of diagnostic measurements. Perfusion magnetic resonance imaging (MRI) is a collection of non-ionizing magnetic resonance-based perfusion measurement techniques that can be used for clinical assessment of cerebral perfusion. The aim of this thesis was to investigate potentials and limitations of perfusion MRI used for clinical assessment of patients with neurological disorders. Patients with glioblastoma were examined with dynamic susceptibility contrast MRI (DSC-MRI) and dynamic contrast enhanced MRI (DCE-MRI) before/after treatment with fractionated radiotherapy (FRT). Radiation-induced changes in normal-appearing brain tissue were found in the form of decreased cerebral blood volume (CBV) and cerebral blood flow (CBF) measured with DSC-MRI and increased vascular permeability and increased fraction of the extravascular extracellular space measured with DCE-MRI. Papers I–II provide valuable information regarding the possibility that radiation-induced changes could be a confounder in DSC-MRI and that DCE-MRI could potentially act as a biomarker for vascular damage secondary to radiation exposure. Additionally, CBF derived from arterial spin labelling (ASL) was compared to the reference standard 15 O-water positron emission tomography (PET). Simultaneous measurements were acquired with an integrated PET/MR scanner using arterial blood sampling and zero-echo time-based attenuation correction in healthy subjects and patients with epilepsy. Correlation- and Bland–Altman analysis showed fair correlation and a negative relationship with wide limits of agreement in several cortical and subcortical regions. Thus, agreement with 15 O-water is insufficient for absolute quantification with ASL, but ASL provides reliable relative measures that could potentially be rescaled to absolute values. Moyamoya disease (MMD) is characterized by progressive stenosis/occlusion in large brain arteries. A limitation of ASL is the sensitivity to prolonged arterial transit times, which is common in the collateral vessels of the brain in patients with MMD. Given the non-invasiveness and non-ionizing exposure, ASL has a pronounced potential for use in diagnostic imaging in patients with MMD. ASL was performed before and after administration of acetazolamide; CBF and cerebrovascular reserve capacity were deriv |
---|