Technical preparations for the in-vessel 14 MeV neutron calibration at JET
The power output of fusion devices is measured from their neutron yields which relate directly to the fusion yield. In this paper we describe the devices and methods that have been prepared to perform a new in situ 14 MeV neutron calibration at JET in view of the new DT campaign planned at JET in th...
Gespeichert in:
Veröffentlicht in: | Fusion engineering and design 2017-04, Vol.117, p.107-114 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The power output of fusion devices is measured from their neutron yields which relate directly to the fusion yield. In this paper we describe the devices and methods that have been prepared to perform a new in situ 14 MeV neutron calibration at JET in view of the new DT campaign planned at JET in the next years. The target accuracy of this calibration is ±10% as required for ITER, where a precise neutron yield measurement is important, e.g., for tritium accountancy. In this paper, the constraints and early decisions which defined the main calibration approach are discussed, e.g., the choice of 14 MeV neutron source and the deployment method. The physics preparations, source issues, safety and engineering aspects required to calibrate directly the JET neutron detectors are also discussed. The existing JET remote-handling system will be used to deploy the neutron source inside the JET vessel. For this purpose, compatible tooling and systems necessary to ensure safe and efficient deployment have been developed. The scientific programme of the preparatory phase is devoted to fully characterizing the selected 14 MeV neutron generator to be used as the calibrating source, obtain a better understanding of the limitations of the calibration, optimise the measurements and other provisions, and to provide corrections for perturbing factors (e.g., anisotropy of the neutron generator, neutron energy spectrum dependence on emission angle). Much of this work has been based on an extensive programme of Monte-Carlo calculations which provide support and guidance in developing the calibration strategy. |
---|---|
ISSN: | 0920-3796 1873-7196 1873-7196 |
DOI: | 10.1016/j.fusengdes.2017.01.023 |