Characterization of a β=0.5 double spoke cavity with a fixed power coupler
ESS, the European Spallation Source, will adopt a single family of double spoke cavities for accelerating the beam from the normal conducting section to the first family of the elliptical superconducting cavities. It will be the first double spoke cavities in the world to be commissioned for a high...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2019-05, Vol.927, p.63-69 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ESS, the European Spallation Source, will adopt a single family of double spoke cavities for accelerating the beam from the normal conducting section to the first family of the elliptical superconducting cavities. It will be the first double spoke cavities in the world to be commissioned for a high power proton accelerator. The first double spoke cavity for the ESS project was tested with high power in the HNOSS cryostat at Uppsala University. A pulse-mode test stand based on a self-excited loop was used in this test. The qualification of the cavity package involves a double-spoke superconducting cavity, a fixed fundamental power coupler, tuner, a low-level radiofrequency (LLRF) system and a high-power radiofrequency (RF) station. The test represents an important verification milestone before the module assembly. This cavity had unfortunately a high dynamic loss of 12 W @ 9 MV/m, where potential causes for such a high value have been studied and corresponding suggestions are listed. This paper presents the test configuration, RF conditioning history, first high power performance and experience of this cavity package. |
---|---|
ISSN: | 0168-9002 1872-9576 1872-9576 |
DOI: | 10.1016/j.nima.2019.02.003 |