Is Asynchronous Hatching Adaptive in Herring Gulls (Larus argentatus)?

Hatching asynchrony commonly induces a size hierarchy among siblings and the resultant competition for food between siblings can often lead to starvation of the smallest chicks within a brood. We created herring gull (Larus argentatus) broods with varying degrees of hatching synchrony by manipulatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavioral ecology and sociobiology 2000-04, Vol.47 (5), p.304-311
Hauptverfasser: Hillström, Lars, Kilpi, Mikael, Lindström, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hatching asynchrony commonly induces a size hierarchy among siblings and the resultant competition for food between siblings can often lead to starvation of the smallest chicks within a brood. We created herring gull (Larus argentatus) broods with varying degrees of hatching synchrony by manipulating the timing of incubation while maintaining the originally laid eggs. The degree of hatching asynchrony affected sibling size hierarchy at the time of hatching of the last-hatched "c-chick." In unmanipulated broods, there was no disadvantage of being a c-chick. However, when asynchrony was experimentally increased, we found reduced survival of the c-chick only in the exaggerated asynchronous experimental group. The effects were observable only during the first 10 days of chick life. We recorded no cases of the chicks dying of starvation. Furthermore, behavioral observations indicated that there was no sibling competition, and no selective feeding of larger sibs in the study colony. We propose that the observed lower survival rates of c-chicks in exaggerated asynchronous broods resulted from their lesser motor abilities, affecting their chances of escaping predators. Fledging success for the whole colony was generally high and almost half of all pairs fledged all three chicks, which is indicative of a good feeding environment. We argue that normal hatching asynchrony is a favorable solution in a good feeding environment, but that increased asynchrony reduces breeding success. We do not view asynchrony in the herring gull as an adaptation for brood reduction and propose instead that it may come about because there has been selection for incubation to start before clutch completion.
ISSN:0340-5443
1432-0762
1432-0762
DOI:10.1007/s002650050670