On the ion-neutral coupling in cometary comae
In a cometary coma, the ion-neutral decoupling distance, sometimes referred to as the ion exobase or collisionopause, can be defined as the cometocentric distance, r(in), where ions, initially moving with the neutral outgassing speed, have a probability of 1/e of not colliding with neutrals on their...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2019-01, Vol.482 (2), p.1937-1941 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a cometary coma, the ion-neutral decoupling distance, sometimes referred to as the ion exobase or collisionopause, can be defined as the cometocentric distance, r(in), where ions, initially moving with the neutral outgassing speed, have a probability of 1/e of not colliding with neutrals on their subsequent journey radially outwards. We present an analytical model for calculating this decoupling distance in the presence of a static radial electric field. We show that for a logarithmically decaying potential, the value of r(in) can even decrease to similar to 15 per cent of its field-free case value. Moreover, already at this distance, the effective ion speed can be expected to markedly exceed the neutral expansion velocity. These analytical results are in line with previous numerical calculations, adapting similar but not identical field profiles. The presence of a non-negligible ambipolar electric field and limited importance of ion-neutral collisional coupling are further supported by observations in the diamagnetic cavity of comet 67P/Churyumov-Gerasimenko by plasma instruments onboard Rosetta that reveal ion speeds several times higher than the neutral expansion velocity. |
---|---|
ISSN: | 0035-8711 1365-2966 1365-2966 |
DOI: | 10.1093/mnras/sty2869 |