Advances in electrochromic device technology: Multiple roads towards superior durability

Most electrochromic (EC) devices must have a service lifetime of many years, and this is particularly so for “smart windows” in buildings with good energy efficiency and indoor comfort. The central part of oxide-based EC devices contains thin films based on W oxide and Ni oxide together with an inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2019-01, Vol.357, p.619-625
Hauptverfasser: Granqvist, Claes G., Arvizu, Miguel A., Qu, Hui-Ying, Wen, Rui-Tao, Niklasson, Gunnar A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most electrochromic (EC) devices must have a service lifetime of many years, and this is particularly so for “smart windows” in buildings with good energy efficiency and indoor comfort. The central part of oxide-based EC devices contains thin films based on W oxide and Ni oxide together with an interposed electrolyte. Depending on operating conditions, these films may show degradation at a slower or faster pace, and means to prevent or reverse this phenomenon, or as a minimum allow reliable lifetime prediction, have been sought ever since the beginnings of EC technology. Here we survey recent endeavors related to EC films of W oxide and Ni oxide and show that (i) electrochemical pretreatment of films in a liquid electrolyte can significantly improve durability, (ii) electrochemical posttreatment in a liquid electrolyte can rejuvenate degraded films, (iii) mixed oxides can have better durability and optical performance than corresponding pure oxides, and (iv) lifetime prediction is possible.
ISSN:0257-8972
1879-3347
1879-3347
DOI:10.1016/j.surfcoat.2018.10.048