Synthesis, Gene Silencing, and Molecular Modeling Studies of 4′-C-Aminomethyl-2′-O-methyl Modified Small Interfering RNAs

The linear syntheses of 4′-C-aminomethyl-2′-O-methyl uridine and cytidine nucleoside phosphoramidites were achieved using glucose as the starting material. The modified RNA building blocks were incorporated into small interfering RNAs (siRNAs) by employing solid phase RNA synthesis. Thermal melting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2012-04, Vol.77 (7), p.3233-3245
Hauptverfasser: Gore, Kiran R, Nawale, Ganesh N, Harikrishna, S, Chittoor, Vinita G, Pandey, Sushil Kumar, Höbartner, Claudia, Patankar, Swati, Pradeepkumar, P. I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The linear syntheses of 4′-C-aminomethyl-2′-O-methyl uridine and cytidine nucleoside phosphoramidites were achieved using glucose as the starting material. The modified RNA building blocks were incorporated into small interfering RNAs (siRNAs) by employing solid phase RNA synthesis. Thermal melting studies showed that the modified siRNA duplexes exhibited slightly lower T m (∼1 °C/modification) compared to the unmodified duplex. Molecular dynamics simulations revealed that the 4′-C-aminomethyl-2′-O-methyl modified nucleotides adopt South-type conformation in a siRNA duplex, thereby altering the stacking and hydrogen-bonding interactions. These modified siRNAs were also evaluated for their gene silencing efficiency in HeLa cells using a luciferase-based reporter assay. The results indicate that the modifications are well tolerated in various positions of the passenger strand and at the 3′ end of the guide strand but are less tolerated in the seed region of the guide strand. The modified siRNAs exhibited prolonged stability in human serum compared to unmodified siRNA. This work has implications for the use of 4′-C-aminomethyl-2′-O-methyl modified nucleotides to overcome some of the challenges associated with the therapeutic utilities of siRNAs.
ISSN:0022-3263
1520-6904
1520-6904
DOI:10.1021/jo202666m