Swelling of Thin Graphene Oxide Films Studied by in Situ Neutron Reflectivity

Permeation of multilayered graphene oxide (GO) membranes by polar solvents is known to correlate with their swelling properties and amount of sorbed solvent. However, quantitative estimation of sorption using standard (e.g., gravimetric) methods is technically challenging for few nanometers thick GO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2018-06, Vol.122 (24), p.13106-13116
Hauptverfasser: Klechikov, Alexey, Sun, Jinhua, Vorobiev, Alexei, Talyzin, Alexandr V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Permeation of multilayered graphene oxide (GO) membranes by polar solvents is known to correlate with their swelling properties and amount of sorbed solvent. However, quantitative estimation of sorption using standard (e.g., gravimetric) methods is technically challenging for few nanometers thick GO membranes/films exposed to solvent vapors. Neutron reflectivity (NR) was used here to evaluate the amount of solvents intercalated into the film which consists of only ∼31.5 layers of GO. Analysis of NR data recorded from the GO film exposed to vapors of polar solvents provides information about change of film thickness due to swelling, amount of intercalated solvent, and selectivity in sorption of solvents from binary mixtures. A quantitative study of GO film sorption was performed for D2O, d-methanol, ethanol, dimethyl sulfoxide (DMSO), acetonitrile, dimethylformamide (DMF), and acetone. Using isotopic contrast, we estimated selectivity in sorption of ethanol/d-methanol mixtures by the GO film. Estimation of sorption selectivity was also performed for D2O/DMF, D2O/DMSO, and D2O/acetonitrile binary mixtures. Sorption of polar solvents was compared for the thin GO film, micrometer thick free standing GO membranes, and graphite oxide powders.
ISSN:1932-7447
1932-7455
1932-7455
DOI:10.1021/acs.jpcc.8b01616