Quantitative Mass Spectrometry Imaging of Prostaglandins as Silver Ion Adducts with Nanospray Desorption Electrospray Ionization

Prostaglandins (PG) are an important class of lipid biomolecules that are essential in many biological processes, including inflammation and successful pregnancy. Despite a high bioactivity, physiological concentrations are typically low, which makes direct mass spectrometric analysis of endogenous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2018-06, Vol.90 (12), p.7246-7252
Hauptverfasser: Duncan, Kyle D, Fang, Ru, Yuan, Jia, Chu, Rosalie K, Dey, Sudhansu K, Burnum-Johnson, Kristin E, Lanekoff, Ingela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prostaglandins (PG) are an important class of lipid biomolecules that are essential in many biological processes, including inflammation and successful pregnancy. Despite a high bioactivity, physiological concentrations are typically low, which makes direct mass spectrometric analysis of endogenous PG species challenging. Consequently, there have not been any studies investigating PG localization to specific morphological regions in tissue sections using mass spectrometry imaging (MSI) techniques. Herein, we show that silver ions, added to the solvent used for nanospray desorption electrospray ionization (nano-DESI) MSI, enhances the ionization of PGs and enables nano-DESI MSI of several species in uterine tissue from day 4 pregnant mice. It was found that detection of [PG + Ag]+ ions increased the sensitivity by ∼30 times, when compared to [PG – H]− ions. Further, the addition of isotopically labeled internal standards enabled generation of quantitative ion images for the detected PG species. Increased sensitivity and quantitative MSI enabled the first proof-of-principle results detailing PG localization in mouse uterus tissue sections. These results show that PG species primarily localized to cellular regions of the luminal epithelium and glandular epithelium in uterine tissue. Further, this study provides a unique scaffold for future studies investigating the PG distribution within biological tissue samples.
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/acs.analchem.8b00350