Impact of Dynamically Exposed Polarity on Permeability and Solubility of Chameleonic Drugs Beyond the Rule of 5

Conformational flexibility has been proposed to significantly affect drug properties outside rule-of-5 (Ro5) chemical space. Here, we investigated the influence of dynamically exposed polarity on cell permeability and aqueous solubility for a structurally diverse set of drugs and clinical candidates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2018-05, Vol.61 (9), p.4189-4202
Hauptverfasser: Rossi Sebastiano, Matteo, Doak, Bradley C, Backlund, Maria, Poongavanam, Vasanthanathan, Over, Björn, Ermondi, Giuseppe, Caron, Giulia, Matsson, Pär, Kihlberg, Jan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conformational flexibility has been proposed to significantly affect drug properties outside rule-of-5 (Ro5) chemical space. Here, we investigated the influence of dynamically exposed polarity on cell permeability and aqueous solubility for a structurally diverse set of drugs and clinical candidates far beyond the Ro5, all of which populated multiple distinct conformations as revealed by X-ray crystallography. Efflux-inhibited (passive) Caco-2 cell permeability correlated strongly with the compounds’ minimum solvent-accessible 3D polar surface areas (PSA), whereas aqueous solubility depended less on the specific 3D conformation. Inspection of the crystal structures highlighted flexibly linked aromatic side chains and dynamically forming intramolecular hydrogen bonds as particularly effective in providing “chameleonic” properties that allow compounds to display both high cell permeability and aqueous solubility. These structural features, in combination with permeability predictions based on the correlation to solvent-accessible 3D PSA, should inspire drug design in the challenging chemical space far beyond the Ro5.
ISSN:0022-2623
1520-4804
1520-4804
DOI:10.1021/acs.jmedchem.8b00347