Electronic structure of the dilute magnetic semiconductor Ga1−xMnxP from hard x-ray photoelectron spectroscopy and angle-resolved photoemission
We have investigated the electronic structure of the dilute magnetic semiconductor (DMS) Ga0.98Mn0.02P and compared it to that of an undoped GaP reference sample, using hard x-ray photoelectron spectroscopy (HXPS) and hard x-ray angle-resolved photoemission spectroscopy (HARPES) at energies of about...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-04, Vol.97 (15) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have investigated the electronic structure of the dilute magnetic semiconductor (DMS) Ga0.98Mn0.02P and compared it to that of an undoped GaP reference sample, using hard x-ray photoelectron spectroscopy (HXPS) and hard x-ray angle-resolved photoemission spectroscopy (HARPES) at energies of about 3 keV. We present experimental data, as well as theoretical calculations, to understand the role of the Mn dopant in the emergence of ferromagnetism in this material. Both core-level spectra and angle-resolved or angle-integrated valence spectra are discussed. In particular, the HARPES experimental data are compared to free-electron final-state model calculations and to more accurate one-step photoemission theory. The experimental results show differences between Ga0.98Mn0.02P and GaP in both angle-resolved and angle-integrated valence spectra. The Ga0.98Mn0.02P bands are broadened due to the presence of Mn impurities that disturb the long-range translational order of the host GaP crystal. Mn-induced changes of the electronic structure are observed over the entire valence band range, including the presence of a distinct impurity band close to the valence-band maximum of the DMS. These experimental results are in good agreement with the one-step photoemission calculations and a prior HARPES study of Ga0.97Mn0.03As and GaAs [Gray et al., Nat. Mater. 11, 957 (2012)], demonstrating the strong similarity between these two materials. The Mn 2p and 3s core-level spectra also reveal an essentially identical state in doping both GaAs and GaP. |
---|---|
ISSN: | 2469-9950 2469-9969 2469-9969 |
DOI: | 10.1103/PhysRevB.97.155149 |