Interleukin-22 reverses human islet dysfunction and apoptosis triggered by hyperglycemia and LIGHT

Interleukin (IL)-22 has recently been suggested as an anti-inflammatory cytokine that could protect the islet cells from inflammation- and glucose-induced toxicity. We have previously shown that the tumor necrosis factor family member, LIGHT, can impair human islet function at least partly via pro-a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular endocrinology 2018-04, Vol.60 (3), p.171-183
Hauptverfasser: Abadpour, Shadab, Halvorsen, Bente, Sahraoui, Afaf, Korsgren, Olle, Aukrust, Pål, Scholz, Hanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interleukin (IL)-22 has recently been suggested as an anti-inflammatory cytokine that could protect the islet cells from inflammation- and glucose-induced toxicity. We have previously shown that the tumor necrosis factor family member, LIGHT, can impair human islet function at least partly via pro-apoptotic effects. Herein, we aimed to investigate the protective role of IL-22 on human islets exposed to the combination of hyperglycemia and LIGHT. First, we found upregulation of LIGHT receptors (LTβR and HVEM) in engrafted human islets exposed to hyperglycemia (>11 mM) for 17 days post transplantation by using a double islet transplantation mouse model as well as in human islets cultured with high glucose (HG) (20 mM glucose) + LIGHT in vitro, and this latter effect was attenuated by IL-22. The effect of HG + LIGHT impairing glucose-stimulated insulin secretion was reversed by IL-22. The harmful effect of HG + LIGHT on human islet function seemed to involve enhanced endoplasmic reticulum stress evidenced by upregulation of p-IRE1α and BiP, elevated secretion of pro-inflammatory cytokines (IL-6, IL-8, IP-10 and MCP-1) and the pro-coagulant mediator tissue factor (TF) release and apoptosis in human islets, whereas all these effects were at least partly reversed by IL-22. Our findings suggest that IL-22 could counteract the harmful effects of LIGHT/hyperglycemia on human islet cells and potentially support the strong protective effect of IL-22 on impaired islet function and survival.
ISSN:0952-5041
1479-6813
1479-6813
DOI:10.1530/JME-17-0182