Experimental and theoretical study of the microscopic crater wear mechanism in titanium machining
Continuous turning of Ti6Al4V with uncoated WC-Co cutting tool inserts mainly results in crater wear on the rake face of the tool. The crater is located close to the cutting edge and increases in size with increased time in cut. The flank wear remains minor until the point when the crater reaches a...
Gespeichert in:
Veröffentlicht in: | Wear 2017-04, Vol.376-377, p.115-124 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Continuous turning of Ti6Al4V with uncoated WC-Co cutting tool inserts mainly results in crater wear on the rake face of the tool. The crater is located close to the cutting edge and increases in size with increased time in cut. The flank wear remains minor until the point when the crater reaches a critical size so that the edge deforms plastically and edge breakage occurs. To understand the crater wear degradation mechanisms, this study focuses on examining the worn tool at different stages, using both experimental and theoretical techniques, as well as under static and dynamic conditions.
A layer of adhered work-piece material is observed in the crater. The present study shows both experimental and theoretical evidence of carbon depletion of the WC in the crater and formation of W (bcc) at the interface during wet continuous longitudinal turning of Ti6Al4V. This has been demonstrated for the first time. In addition, indications of a carbon rich compound, possibly MC, where M=Ti, V and W, are also observed. These observations are verified by simulation of the diffusion process. Furthermore, diffusion simulations indicate that a liquid may form at the tool/chip interface in the crater zone during machining.
Turning is a dynamic process, however, to study the chemical driving forces in this system under static conditions, a means of verification of which phases will form is needed. Therefore, a diffusion couple consisting of the same materials is prepared and analyzed. Similar results are obtained for the diffusion couple as for the worn tool, indicating that the chemical wear is an important degradation parameter. The diffusion couple results are also compared to a numerical simulation of the diffusion process.
•Detailed investigation of the interface between adhered material and cutting tool.•Chemical interaction verified by diffusion experiments and simulations.•Tentative model for describing the microscopic wear proposed. |
---|---|
ISSN: | 0043-1648 1873-2577 1873-2577 |
DOI: | 10.1016/j.wear.2017.01.104 |