Exploring Non‐obvious Hydrophobic Binding Pockets on Protein Surfaces: Increasing Affinities in Peptide–Protein Interactions

A 42‐residue polypeptide conjugated to a small‐molecule organic ligand capable of targeting the phosphorylated side chain of Ser15 was shown to bind glycogen phosphorylase a (GPa) with a KD value of 280 nm. The replacement of hydrophobic amino acids by Ala reduced affinities, whereas the incorporati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2017-07, Vol.18 (14), p.1396-1407
Hauptverfasser: Balliu, Aleksandra, Baltzer, Lars
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A 42‐residue polypeptide conjugated to a small‐molecule organic ligand capable of targeting the phosphorylated side chain of Ser15 was shown to bind glycogen phosphorylase a (GPa) with a KD value of 280 nm. The replacement of hydrophobic amino acids by Ala reduced affinities, whereas the incorporation of l‐2‐aminooctanoic acid (Aoc) increased them. Replacing Nle5, Ile9 and Leu12 by Aoc reduced the KD value from 280 to 27 nm. “Downsizing” the 42‐mer to an undecamer gave rise to an affinity for GPa an order of magnitude lower, but the undecamer in which Nle5, Ile9 and Leu12 were replaced by Aoc showed a KD value of 550 nm, comparable with that of the parent 42‐mer. The use of Aoc residues offers a convenient route to increased affinity in protein recognition as well as a strategy for the “downsizing” of peptides essentially without loss of affinity. The results show that hydrophobic binding sites can be found on protein surfaces by comparing the affinities of polypeptide conjugates in which Aoc residues replace Nle, Ile, Leu or Phe with those of their unmodified counterparts. Polypeptide conjugates thus provide valuable opportunities for the optimization of peptides and small organic compounds in biotechnology and biomedicine. Not always the answer to life, the universe and everything: Replacing naturally occurring hydrophobic amino acid residues with l‐2‐aminooctanoic acid increases affinity for target proteins and thus enabled a 42‐mer peptide to be “downsized” to an undecamer. Such conjugates provide opportunities to optimize peptides and small organic compounds in biotechnology and biomedicine.
ISSN:1439-4227
1439-7633
1439-7633
DOI:10.1002/cbic.201700048