QM/MM Study of Substituent and Solvent Effects on the Excited State Dynamics of the Photoactive Yellow Protein Chromophore

Substituent and solvent effects on the excited state dynamics of the Photoactive Yellow Protein chromophore are studied using the average solvent electrostatic potential from molecular dynamics (ASEP/MD) method. Four molecular models were considered: the ester and thioester derivatives of the p-coum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2017-02, Vol.13 (2), p.737-748
Hauptverfasser: García-Prieto, Francisco F, Muñoz-Losa, Aurora, Fdez. Galván, Ignacio, Sánchez, M. Luz, Aguilar, Manuel A, Martín, M. Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Substituent and solvent effects on the excited state dynamics of the Photoactive Yellow Protein chromophore are studied using the average solvent electrostatic potential from molecular dynamics (ASEP/MD) method. Four molecular models were considered: the ester and thioester derivatives of the p-coumaric acid anion and their methylated derivatives. We found that the solvent produces dramatic modifications on the free energy profile of the S1 state: 1) Two twisted structures that are minima in the gas phase could not be located in aqueous solution. 2) Conical intersections (CIs) associated with the rotation of the single bond adjacent to the phenyl group are found for the four derivatives in water solution but only for thio derivatives in the gas phase. 3) The relative stability of minima and CIs is reverted with respect to the gas phase values, affecting the prevalent de-excitation paths. As a consequence of these changes, three competitive de-excitation channels are open in aqueous solution: the fluorescence emission from a planar minimum on S1, the trans–cis photoisomerization through a CI that involves the rotation of the vinyl double bond, and the nonradiative, nonreactive, de-excitation through the CI associated with the rotation of the single bond adjacent to the phenyl group. In the gas phase, the minima are the structures with the lower energy, while in solution these are the conical intersections. In solution, the de-excitation prevalent path seems to be the photoisomerization for oxo compounds, while thio compounds return to the initial trans ground state without emission.
ISSN:1549-9618
1549-9626
1549-9626
DOI:10.1021/acs.jctc.6b01069