On robust input design for nonlinear dynamical models

We present a method for robust input design for nonlinear state-space models. The method optimizes a scalar cost function of the Fisher information matrix over a set of marginal distributions of stationary processes. By using elements from graph theory we characterize such a set. Since the true syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2017-03, Vol.77, p.268-278
Hauptverfasser: Valenzuela, Patricio E., Dahlin, Johan, Rojas, Cristian R., Schön, Thomas B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a method for robust input design for nonlinear state-space models. The method optimizes a scalar cost function of the Fisher information matrix over a set of marginal distributions of stationary processes. By using elements from graph theory we characterize such a set. Since the true system is unknown, the resulting optimization problem takes the uncertainty on the true value of the parameters into account. In addition, the required estimates of the information matrix are computed using particle methods, and the resulting problem is convex in the decision variables. Numerical examples illustrate the proposed technique by identifying models using the expectation–maximization algorithm.
ISSN:0005-1098
1873-2836
1873-2836
DOI:10.1016/j.automatica.2016.11.030