Mathematical Morphology on Irregularly Sampled Signals

This paper introduces a new operator that can be used to approximate continuous-domain mathematical morphology on irregularly sampled surfaces. We define a new way of approximating the continuous domain dilation by duplicating and shifting samples according to a flat continuous structuring element....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Asplund, Teo, Luengo Hendriks, Cris L., Thurley, Matthew J., Strand, Robin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a new operator that can be used to approximate continuous-domain mathematical morphology on irregularly sampled surfaces. We define a new way of approximating the continuous domain dilation by duplicating and shifting samples according to a flat continuous structuring element. We show that the proposed algorithm can better approximate continuous dilation, and that dilations may be sampled irregularly to achieve a smaller sampling without greatly compromising the accuracy of the result.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-54427-4_37