Mathematical Morphology on Irregularly Sampled Signals
This paper introduces a new operator that can be used to approximate continuous-domain mathematical morphology on irregularly sampled surfaces. We define a new way of approximating the continuous domain dilation by duplicating and shifting samples according to a flat continuous structuring element....
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces a new operator that can be used to approximate continuous-domain mathematical morphology on irregularly sampled surfaces. We define a new way of approximating the continuous domain dilation by duplicating and shifting samples according to a flat continuous structuring element. We show that the proposed algorithm can better approximate continuous dilation, and that dilations may be sampled irregularly to achieve a smaller sampling without greatly compromising the accuracy of the result. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-54427-4_37 |