Microfabrication of miniature x-ray source and x-ray refractive lens

In several x-ray related areas there is a need for high-precision elements for x-ray generation and focusing. An elegant way of realizing x-ray related elements with high precision and low surface roughness is by the use of microfabrication; a combination of semiconductor processing techniques and m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ribbing, Carolina
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In several x-ray related areas there is a need for high-precision elements for x-ray generation and focusing. An elegant way of realizing x-ray related elements with high precision and low surface roughness is by the use of microfabrication; a combination of semiconductor processing techniques and miniaturization. Photolithographic patterning of silicon followed by deposition, etching, bonding and replication is used for batchwise fabrication of small well-defined structures. This thesis describes microfabrication of a miniature x-ray source and a refractive x-ray lens. A miniature x-ray source with diamond electrodes has been tested for x-ray fluorescence. Another version of the source has been vacuum encapsulated and run at atmospheric pressure. One-dimensionally focusing saw-tooth refractive x-ray lenses in silicon, epoxy, and diamond have been fabricated and tested in a synchrotron set-up. Sub-micron focal lines and gains of up to 40 were achieved. The conclusion of the thesis is that the use of microfabrication for construction of x-ray related components can not only improve the performance of existing components, but also open up for entirely new application areas.