Magnetotelluric investigation on Björkö impact structure, west of Stockholm, Sweden

This paper describes the application of magnetotelluric (MT) method to investigate Björkö impact structure located at west of Stockholm, Sweden. This structure has formed in crystalline rocks ca. 1.2 Ga ago and located relatively close to the district heating infrastructure of the Stockholm region,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal of geosciences 2016-09, Vol.9 (13), p.1-17, Article 618
Hauptverfasser: Oskooi, Behrooz, Henkel, Herbert, Pedersen, Laust B., Bäckström, Ann, Abedi, Maysam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes the application of magnetotelluric (MT) method to investigate Björkö impact structure located at west of Stockholm, Sweden. This structure has formed in crystalline rocks ca. 1.2 Ga ago and located relatively close to the district heating infrastructure of the Stockholm region, as the largest district heating system in Europe. Since impact structures mostly contain fractured rock volumes in the form of breccia formations, the occurred brecciation zones in this region are more favorable potential targets for geothermal investigations. The main objective is evaluating the capability of the study area to have potential for geothermal resources by mapping the subsurface structure. To image electrical characteristic of underground layers, 1D and 2D bimodal inversions of TE and TM modes of MT data are performed. The results are also compared with the outputs of the inversion of the determinant data (yielding a direction-independent average of the subsurface conductivity) along the same profiles, proving good accordance of the outputs. The processed resistivity sections at depth along with measuring various rock physical properties across two drilled boreholes at Björkö and Midsommar islands localized two conductors at depths of 1 km and from 2.5 to 4.5 km, which may be attributed to be a potential zone for geothermal energy retrieval.
ISSN:1866-7511
1866-7538
1866-7538
DOI:10.1007/s12517-016-2653-x