Iterating Brownian Motions, Ad Libitum

Let B 1 , B 2 ,… be independent one-dimensional Brownian motions parameterized by the whole real line such that B i (0)=0 for every i ≥1. We consider the n th iterated Brownian motion W n ( t )= B n ( B n −1 (⋯( B 2 ( B 1 ( t )))⋯)). Although the sequence of processes ( W n ) n ≥1 does not converge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2014-06, Vol.27 (2), p.433-448
Hauptverfasser: Curien, Nicolas, Konstantopoulos, Takis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let B 1 , B 2 ,… be independent one-dimensional Brownian motions parameterized by the whole real line such that B i (0)=0 for every i ≥1. We consider the n th iterated Brownian motion W n ( t )= B n ( B n −1 (⋯( B 2 ( B 1 ( t )))⋯)). Although the sequence of processes ( W n ) n ≥1 does not converge in a functional sense, we prove that the finite-dimensional marginals converge. As a consequence, we deduce that the random occupation measures of W n converge to a random probability measure μ ∞ . We then prove that μ ∞ almost surely has a continuous density which should be thought of as the local time process of the infinite iteration W ∞ of independent Brownian motions. We also prove that the collection of random variables ( W ∞ ( t ), t ∈ℝ∖{0}) is exchangeable with directing measure μ ∞ .
ISSN:0894-9840
1572-9230
1572-9230
DOI:10.1007/s10959-012-0434-3