Iterating Brownian Motions, Ad Libitum
Let B 1 , B 2 ,… be independent one-dimensional Brownian motions parameterized by the whole real line such that B i (0)=0 for every i ≥1. We consider the n th iterated Brownian motion W n ( t )= B n ( B n −1 (⋯( B 2 ( B 1 ( t )))⋯)). Although the sequence of processes ( W n ) n ≥1 does not converge...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical probability 2014-06, Vol.27 (2), p.433-448 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
B
1
,
B
2
,… be independent one-dimensional Brownian motions parameterized by the whole real line such that
B
i
(0)=0 for every
i
≥1. We consider the
n
th iterated Brownian motion
W
n
(
t
)=
B
n
(
B
n
−1
(⋯(
B
2
(
B
1
(
t
)))⋯)). Although the sequence of processes (
W
n
)
n
≥1
does not converge in a functional sense, we prove that the finite-dimensional marginals converge. As a consequence, we deduce that the random occupation measures of
W
n
converge to a random probability measure
μ
∞
. We then prove that
μ
∞
almost surely has a continuous density which should be thought of as the local time process of the infinite iteration
W
∞
of independent Brownian motions. We also prove that the collection of random variables (
W
∞
(
t
),
t
∈ℝ∖{0}) is exchangeable with directing measure
μ
∞
. |
---|---|
ISSN: | 0894-9840 1572-9230 1572-9230 |
DOI: | 10.1007/s10959-012-0434-3 |