TRANSITIVE 2-REPRESENTATIONS OF FINITARY 2-CATEGORIES
In this article, we define and study the class of simple transitive 2-representations of finitary 2-categories. We prove a weak version of the classical Jordan-Hölder Theorem where the weak composition subquotients are given by simple transitive 2-representations. For a large class of finitary 2-cat...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2016-11, Vol.368 (11), p.7623-7644 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we define and study the class of simple transitive 2-representations of finitary 2-categories. We prove a weak version of the classical Jordan-Hölder Theorem where the weak composition subquotients are given by simple transitive 2-representations. For a large class of finitary 2-categories we prove that simple transitive 2-representations are exhausted by cell 2-representations. Finally, we show that this large class contains finitary quotients of 2-Kac-Moody algebras.
2010 Mathematics Subject Classification. Primary 18D05; Secondary 16D20, 17B10, 16G10. |
---|---|
ISSN: | 0002-9947 1088-6850 1088-6850 |
DOI: | 10.1090/tran/6583 |