TRANSITIVE 2-REPRESENTATIONS OF FINITARY 2-CATEGORIES

In this article, we define and study the class of simple transitive 2-representations of finitary 2-categories. We prove a weak version of the classical Jordan-Hölder Theorem where the weak composition subquotients are given by simple transitive 2-representations. For a large class of finitary 2-cat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2016-11, Vol.368 (11), p.7623-7644
Hauptverfasser: MAZORCHUK, VOLODYMYR, MIEMIETZ, VANESSA
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we define and study the class of simple transitive 2-representations of finitary 2-categories. We prove a weak version of the classical Jordan-Hölder Theorem where the weak composition subquotients are given by simple transitive 2-representations. For a large class of finitary 2-categories we prove that simple transitive 2-representations are exhausted by cell 2-representations. Finally, we show that this large class contains finitary quotients of 2-Kac-Moody algebras. 2010 Mathematics Subject Classification. Primary 18D05; Secondary 16D20, 17B10, 16G10.
ISSN:0002-9947
1088-6850
1088-6850
DOI:10.1090/tran/6583