Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2

Conventional intercalation cathodes for lithium batteries store charge in redox reactions associated with the transition metal cations, e.g., Mn3+/4+ in LiMn2O4, and this limits the energy storage of Li-ion batteries. Compounds such as Li[Li0.2Ni0.2Mn0.6]O-2 exhibit a capacity to store charge in exc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2016-09, Vol.138 (35), p.11211-11218
Hauptverfasser: Luo, Kun, Roberts, Matthew R., Guerrini, Niccoló, Tapia-Ruiz, Nuria, Hao, Rong, Massel, Felix, Pickup, David M., Ramos, Silvia, Liu, Yi-Sheng, Guo, Jinghua, Chadwick, Alan V., Duda, Laurent C., Bruce, Peter G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conventional intercalation cathodes for lithium batteries store charge in redox reactions associated with the transition metal cations, e.g., Mn3+/4+ in LiMn2O4, and this limits the energy storage of Li-ion batteries. Compounds such as Li[Li0.2Ni0.2Mn0.6]O-2 exhibit a capacity to store charge in excess of the transition metal redox reactions. The additional capacity occurs at and above 4.5 V versus Li+/Li. The capacity at 4.5 V is dominated by oxidation of the O-2(-) anions accounting for similar to 0.43 e(-)/formula unit, with an additional 0.06 e(-)/formula unit being associated with O loss from the lattice. In contrast, the capacity above 4.5 V is mainly O loss, similar to 0.08 e(-)/formula. The O redox reaction involves the formation of localized hole states on O during charge, which are located on O coordinated by (Mn4+/Li+). The results have been obtained by combining operando electrochemical mass spec on 180 labeled Li[Li0.2Ni0.2Mn0.6]O-2 with XANES, soft X-ray spectroscopy, resonant inelastic X-ray spectroscopy, and Raman spectroscopy. Finally the general features of O redox are described with discussion about the role of comparatively ionic (less covalent) 3d metal oxygen interaction on anion redox in lithium rich cathode materials.
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.6b05111