A stabilized Nitsche cut element method for the wave equation
We give a weak formulation for solving the wave equation (ü=∇2u+f) on a 2-dimensional immersed domain. In the spatial finite element discretization, boundaries do not conform to element boundaries. Dirichlet and Neumann boundary conditions are enforced weakly by Nitsche’s method. Additional penalty...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2016-09, Vol.309, p.364-387 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a weak formulation for solving the wave equation (ü=∇2u+f) on a 2-dimensional immersed domain. In the spatial finite element discretization, boundaries do not conform to element boundaries. Dirichlet and Neumann boundary conditions are enforced weakly by Nitsche’s method. Additional penalty terms act on the gradient jumps over the interior faces of the elements cut by the boundary. These terms ensure a non-stiff temporal system, which makes it possible to perform explicit time stepping. We give optimal a priori error estimates: second order accuracy for u−uh and u̇−u̇h, and first order accuracy for ∇(u−uh) in L2-norm. Numerical results verify this. |
---|---|
ISSN: | 0045-7825 1879-2138 1879-2138 |
DOI: | 10.1016/j.cma.2016.06.001 |