Using multi-tracer inference to move beyond single-catchment ecohydrology

Protecting or restoring aquatic ecosystems in the face of growing anthropogenic pressures requires an understanding of hydrological and biogeochemical functioning across multiple spatial and temporal scales. Recent technological and methodological advances have vastly increased the number and divers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth-science reviews 2016-09, Vol.160, p.19-42
Hauptverfasser: Abbott, Benjamin W., Baranov, Viktor, Mendoza-Lera, Clara, Nikolakopoulou, Myrto, Harjung, Astrid, Kolbe, Tamara, Balasubramanian, Mukundh N., Vaessen, Timothy N., Ciocca, Francesco, Campeau, Audrey, Wallin, Marcus B., Romeijn, Paul, Antonelli, Marta, Gonçalves, José, Datry, Thibault, Laverman, Anniet M., de Dreuzy, Jean-Raynald, Hannah, David M., Krause, Stefan, Oldham, Carolyn, Pinay, Gilles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protecting or restoring aquatic ecosystems in the face of growing anthropogenic pressures requires an understanding of hydrological and biogeochemical functioning across multiple spatial and temporal scales. Recent technological and methodological advances have vastly increased the number and diversity of hydrological, biogeochemical, and ecological tracers available, providing potentially powerful tools to improve understanding of fundamental problems in ecohydrology, notably: 1. Identifying spatially explicit flowpaths, 2. Quantifying water residence time, and 3. Quantifying and localizing biogeochemical transformation. In this review, we synthesize the history of hydrological and biogeochemical theory, summarize modern tracer methods, and discuss how improved understanding of flowpath, residence time, and biogeochemical transformation can help ecohydrology move beyond description of site-specific heterogeneity. We focus on using multiple tracers with contrasting characteristics (crossing proxies) to infer ecosystem functioning across multiple scales. Specifically, we present how crossed proxies could test recent ecohydrological theory, combining the concepts of hotspots and hot moments with the Damköhler number in what we call the HotDam framework.
ISSN:0012-8252
1872-6828
1872-6828
DOI:10.1016/j.earscirev.2016.06.014