Placing Greenland ice sheet ablation measurements in a multi-decadal context
In recent years, the Greenland ice sheet has been losing mass at an average rate of 262 ± 21 Gt yr–1 (2007–2011; Andersen et al. 2015). Part of this mass loss was due to increases in melt, reducing the surface mass budget (Enderlin et al. 2014). Also, the acceleration of many marine-terminating outl...
Gespeichert in:
Veröffentlicht in: | GEUS Bulletin 2016-01, Vol.35, p.71-74 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, the Greenland ice sheet has been losing mass at an average rate of 262 ± 21 Gt yr–1 (2007–2011; Andersen et al. 2015). Part of this mass loss was due to increases in melt, reducing the surface mass budget (Enderlin et al. 2014). Also, the acceleration of many marine-terminating outlet glaciers increased the dynamic mass loss (Rignot et al. 2008). Both mass-loss mechanisms are linked to recent increases in atmospheric and oceanic temperatures (Dutton et al. 2015). For instance, in summer 2012 Greenland experienced exceptionally warm atmospheric conditions, causing nearly the entire ice-sheet surface to melt for two periods of several days (Nghiem et al. 2012) and contributing to the largest annual ice-sheet mass loss on record (Khan et al. 2015). This is in contrast to a return to more average conditions in 2015 (Tedesco et al. in press).
|
---|---|
ISSN: | 1904-4666 1811-4598 1604-8156 1604-8156 2597-2154 |
DOI: | 10.34194/geusb.v35.4942 |