Design of a Prototype Differential Die‐Away Instrument Proposed for Swedish Spent Nuclear Fuel Characterization

As part of the United States (US) Department of Energy׳s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project, the traditional Differential Die-Away (DDA) method that was originally developed for waste drum assay has been investigated and modified to provide a novel application to char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2016-06, Vol.821 (C), p.55-65
Hauptverfasser: Martinik, Tomas, Henzl, Vladimir, Grape, Sophie, Jansson, Peter, Swinhoe, Martyn T., Goodsell, Alison V., Tobin, Stephen J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As part of the United States (US) Department of Energy׳s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project, the traditional Differential Die-Away (DDA) method that was originally developed for waste drum assay has been investigated and modified to provide a novel application to characterize or verify spent nuclear fuel (SNF). Following the promising, yet largely theoretical and simulation based, research of physics aspects of the DDA technique applied to SNF assay during the early stages of the NGSI-SF project, the most recent effort has been focused on the practical aspects of developing the first fully functional and deployable DDA prototype instrument for spent fuel. As a result of the collaboration among US research institutions and Sweden, the opportunity to test the newly proposed instrument׳s performance with commercial grade SNF at the Swedish Interim Storage Facility (Clab) emerged. Therefore the design of this instrument prototype has to accommodate the requirements of the Swedish regulator as well as specific engineering constrains given by the unique industrial environment. Within this paper, we identify key components of the DDA based instrument and we present methodology for evaluation and the results of a selection of the most relevant design parameters in order to optimize the performance for a given application, i.e. test-deployment, including assay of 50 preselected spent nuclear fuel assemblies of both pressurized (PWR) as well as boiling (BWR) water reactor type.
ISSN:0168-9002
1872-9576
1872-9576
DOI:10.1016/j.nima.2016.02.052