L 2 Solvability of boundary value problems for divergence form parabolic equations with complex coefficients

We consider parabolic operators of the form $$\partial_t+\mathcal{L},\ \mathcal{L}=-\mbox{div}\, A(X,t)\nabla,$$ in$\mathbb R_+^{n+2}:=\{(X,t)=(x,x_{n+1},t)\in \mathbb R^{n}\times \mathbb R\times \mathbb R:\ x_{n+1}>0\}$, $n\geq 1$. We assume that $A$ is a $(n+1)\times (n+1)$-dimensional matr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations 2017-02, Vol.262 (3), p.2808
1. Verfasser: Nyström, Kaj
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider parabolic operators of the form $$\partial_t+\mathcal{L},\ \mathcal{L}=-\mbox{div}\, A(X,t)\nabla,$$ in$\mathbb R_+^{n+2}:=\{(X,t)=(x,x_{n+1},t)\in \mathbb R^{n}\times \mathbb R\times \mathbb R:\ x_{n+1}>0\}$, $n\geq 1$. We assume that $A$ is a $(n+1)\times (n+1)$-dimensional matrix which is bounded, measurable, uniformly elliptic and complex, and we assume, in addition, that the entries of A are independent of the spatial coordinate $x_{n+1}$ as well as of the time coordinate $t$. For such operators we prove that the boundedness and invertibility of the corresponding layer potential operators are stable on $L^2(\mathbb R^{n+1},\mathbb C)=L^2(\partial\mathbb R^{n+2}_+,\mathbb C)$ under complex, $L^\infty$ perturbations of the coefficient matrix. Subsequently, using this general result, we establish solvability of the Dirichlet, Neumann and Regularity problems for $\partial_t+\mathcal{L}$, by way of  layer potentials and with data in $L^2$,  assuming that the coefficient matrix is a small complex perturbation of either a constant matrix or of a real and symmetric matrix.
ISSN:1090-2732
0022-0396
DOI:10.1016/j.jde.2016.11.011