L 2 Solvability of boundary value problems for divergence form parabolic equations with complex coefficients
We consider parabolic operators of the form $$\partial_t+\mathcal{L},\ \mathcal{L}=-\mbox{div}\, A(X,t)\nabla,$$ in$\mathbb R_+^{n+2}:=\{(X,t)=(x,x_{n+1},t)\in \mathbb R^{n}\times \mathbb R\times \mathbb R:\ x_{n+1}>0\}$, $n\geq 1$. We assume that $A$ is a $(n+1)\times (n+1)$-dimensional matr...
Gespeichert in:
Veröffentlicht in: | Journal of Differential Equations 2017-02, Vol.262 (3), p.2808 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider parabolic operators of the form $$\partial_t+\mathcal{L},\ \mathcal{L}=-\mbox{div}\, A(X,t)\nabla,$$ in$\mathbb R_+^{n+2}:=\{(X,t)=(x,x_{n+1},t)\in \mathbb R^{n}\times \mathbb R\times \mathbb R:\ x_{n+1}>0\}$, $n\geq 1$. We assume that $A$ is a $(n+1)\times (n+1)$-dimensional matrix which is bounded, measurable, uniformly elliptic and complex, and we assume, in addition, that the entries of A are independent of the spatial coordinate $x_{n+1}$ as well as of the time coordinate $t$. For such operators we prove that the boundedness and invertibility of the corresponding layer potential operators are stable on $L^2(\mathbb R^{n+1},\mathbb C)=L^2(\partial\mathbb R^{n+2}_+,\mathbb C)$ under complex, $L^\infty$ perturbations of the coefficient matrix. Subsequently, using this general result, we establish solvability of the Dirichlet, Neumann and Regularity problems for $\partial_t+\mathcal{L}$, by way of layer potentials and with data in $L^2$, assuming that the coefficient matrix is a small complex perturbation of either a constant matrix or of a real and symmetric matrix. |
---|---|
ISSN: | 1090-2732 0022-0396 |
DOI: | 10.1016/j.jde.2016.11.011 |