Joint inversions of three types of electromagnetic data explicitly constrained by seismic observations: results from the central Okavango Delta, Botswana

The Okavango Delta of northern Botswana is one of the world's largest inland deltas or megafans. To obtain information on the character of sediments and basement depths, audiomagnetotelluric (AMT), controlled-source audiomagnetotelluric (CSAMT) and central-loop transient electromagnetic (TEM) d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2015-09, Vol.202 (3), p.1429-1452
Hauptverfasser: Kalscheuer, Thomas, Blake, Sarah, Podgorski, Joel E., Wagner, Frederic, Green, Alan G., Maurer, Hansruedi, Jones, Alan G., Muller, Mark, Ntibinyane, Ongkopotse, Tshoso, Gomotsang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Okavango Delta of northern Botswana is one of the world's largest inland deltas or megafans. To obtain information on the character of sediments and basement depths, audiomagnetotelluric (AMT), controlled-source audiomagnetotelluric (CSAMT) and central-loop transient electromagnetic (TEM) data were collected on the largest island within the delta. The data were inverted individually and jointly for 1-D models of electric resistivity. Distortion effects in the AMT and CSAMT data were accounted for by including galvanic distortion tensors as free parameters in the inversions. By employing Marquardt–Levenberg inversion, we found that a 3-layer model comprising a resistive layer overlying sequentially a conductive layer and a deeper resistive layer was sufficient to explain all of the electromagnetic data. However, the top of the basal resistive layer from electromagnetic-only inversions was much shallower than the well-determined basement depth observed in high-quality seismic reflection images and seismic refraction velocity tomograms. To resolve this discrepancy, we jointly inverted the electromagnetic data for 4-layer models by including seismic depths to an interface between sedimentary units and to basement as explicit a priori constraints. We have also estimated the interconnected porosities, clay contents and pore-fluid resistivities of the sedimentary units from their electrical resistivities and seismic P-wave velocities using appropriate petrophysical models. In the interpretation of our preferred model, a shallow ∼40 m thick freshwater sandy aquifer with 85–100 Ωm resistivity, 10–32 per cent interconnected porosity and
ISSN:0956-540X
1365-246X
1365-246X
DOI:10.1093/gji/ggv184