In vivo quantification of hypoxic and metabolic status of NSCLC tumors using [18F]HX4 and [18F]FDG-PET/CT imaging

Increased tumor metabolism and hypoxia are related to poor prognosis in solid tumors, including non-small cell lung cancer (NSCLC). PET imaging is a noninvasive technique that is frequently used to visualize and quantify tumor metabolism and hypoxia. The aim of this study was to perform an extensive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2014-12, Vol.20 (24), p.6389-6397
Hauptverfasser: Zegers, Catharina M L, van Elmpt, Wouter, Reymen, Bart, Even, Aniek J G, Troost, Esther G C, Ollers, Michel C, Hoebers, Frank J P, Houben, Ruud M A, Eriksson, Jonas, Windhorst, Albert D, Mottaghy, Felix M, De Ruysscher, Dirk, Lambin, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increased tumor metabolism and hypoxia are related to poor prognosis in solid tumors, including non-small cell lung cancer (NSCLC). PET imaging is a noninvasive technique that is frequently used to visualize and quantify tumor metabolism and hypoxia. The aim of this study was to perform an extensive comparison of tumor metabolism using 2[(18)F]fluoro-2-deoxy-d-glucose (FDG)-PET and hypoxia using HX4-PET imaging. FDG- and HX4-PET/CT images of 25 patients with NSCLC were coregistered. At a global tumor level, HX4 and FDG parameters were extracted from the gross tumor volume (GTV). The HX4 high-fraction (HX4-HF) and HX4 high-volume (HX4-HV) were defined using a tumor-to-blood ratio > 1.4. For FDG high-fraction (FDG-HF) and FDG high-volume (FDG-HV), a standardized uptake value (SUV) > 50% of SUVmax was used. We evaluated the spatial correlation between HX4 and FDG uptake within the tumor, to quantify the (mis)match between volumes with a high FDG and high HX4 uptake. At a tumor level, significant correlations were observed between FDG and HX4 parameters. For the primary GTV, the HX4-HF was three times smaller compared with the FDG-HF. In 53% of the primary lesions, less than 1 cm(3) of the HX4-HV was outside the FDG-HV; for 37%, this volume was 1.9 to 12 cm(3). Remarkably, a distinct uptake pattern was observed in 11%, with large hypoxic volumes localized outside the FDG-HV. Hypoxic tumor volumes are smaller than metabolic active volumes. Approximately half of the lesions showed a good spatial correlation between the PET tracers. In the other cases, a (partial) mismatch was observed. The addition of HX4-PET imaging has the potential to individualize patient treatment.
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.CCR-14-1524