Bi-directional Alfvén cyclotron instabilities in the mega-amp spherical tokamak
Alfvén cyclotron instabilities excited by velocity gradients of energetic beam ions were investigated in MAST experiments with super-Alfvénic neutral beam injection over a wide range of toroidal magnetic fields from ∼0.34 T to ∼0.585 T. In MAST discharges with high magnetic field, a discrete spectru...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2014-08, Vol.21 (8) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alfvén cyclotron instabilities excited by velocity gradients of energetic beam ions were investigated in MAST experiments with super-Alfvénic neutral beam injection over a wide range of toroidal magnetic fields from ∼0.34 T to ∼0.585 T. In MAST discharges with high magnetic field, a discrete spectrum of modes in the sub-cyclotron frequency range is excited toroidally propagating counter to the beam and plasma current (toroidal mode numbers n 0 arises, in addition to the modes with n 0 become dominant, they are observed in frequency range from ∼250 kHz for n=1 to ∼3.5 MHz for n=15, well above the on-axis ion cyclotron frequency (∼2.5 MHz). The data is interpreted in terms of normal and anomalous Doppler resonances modified by magnetic drift terms due to inhomogeneity and curvature of the magnetic field. A Hall MHD model is applied for computing the eigenfrequencies and the spatial mode structure of CAEs and a good agreement with the experimental frequencies is found. |
---|---|
ISSN: | 1070-664X 1089-7674 1089-7674 |
DOI: | 10.1063/1.4891322 |