Ultrafast X-ray Auger probing of photoexcited molecular dynamics
Molecules can efficiently and selectively convert light energy into other degrees of freedom. Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited molecule presents a challenge to current spectroscopic approaches. Here we explore the photoexcited dynamics of mole...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-06, Vol.5 (1), p.4235-4235, Article 4235 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Molecules can efficiently and selectively convert light energy into other degrees of freedom. Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited molecule presents a challenge to current spectroscopic approaches. Here we explore the photoexcited dynamics of molecules by an interaction with an ultrafast X-ray pulse creating a highly localized core hole that decays via Auger emission. We discover that the Auger spectrum as a function of photoexcitation—X-ray-probe delay contains valuable information about the nuclear and electronic degrees of freedom from an element-specific point of view. For the nucleobase thymine, the oxygen Auger spectrum shifts towards high kinetic energies, resulting from a particular C–O bond stretch in the
ππ*
photoexcited state. A subsequent shift of the Auger spectrum towards lower kinetic energies displays the electronic relaxation of the initial photoexcited state within 200 fs.
Ab-initio
simulations reinforce our interpretation and indicate an electronic decay to the
nπ*
state.
Photoexciting molecules provides insights into their different degrees of freedom if the ultrafast electron and nuclei motion can be properly analysed. To this end, McFarland
et al.
use X-ray pump-probe techniques to show that Auger spectra can unveil information on nuclear relaxation in molecules. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms5235 |