Structure and optical properties of (CdSxSe1-x)(42) nanoclusters

The structures of the (CdS)(42), (CdSe)(42), Cd42Se32S10, Cd42Se22S20, and Cd42Se10S32 clusters have been determined using the simulated annealing method. Factors influencing the band gap value have been analysed. We show that the gap is most significantly reduced when strongly under coordinated ato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2014, Vol.16 (27), p.13956
Hauptverfasser: Wang, Baochang, Skorodumova, Natalia V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structures of the (CdS)(42), (CdSe)(42), Cd42Se32S10, Cd42Se22S20, and Cd42Se10S32 clusters have been determined using the simulated annealing method. Factors influencing the band gap value have been analysed. We show that the gap is most significantly reduced when strongly under coordinated atoms are present on the surface of the nanoclusters. In addition, the band gap depends on the S concentration as well as on the distribution of the S and Se atoms in the clusters. We present the optical absorption spectra calculated with BSE and RPA methods based on the GW corrected quasiparticle energies. Strong electron-hole coupling is observed for all the clusters, shifting the calculated RPA onset of optical absorption to lower energies. The absorption edge is shifted to higher photon energies as S concentration increases. The calculated energy separation of the first bright exciton and first dark exciton increases with S concentration.
ISSN:1463-9076
1463-9084
DOI:10.1039/c4cp01008f