Electronic structure and chemical and magnetic interactions in ZnO doped with Co and Al: Experiments and ab initio density-functional calculations

We present results of electronic structure and magnetization measurements of Co:ZnO and Co:ZnO codoped with Al thin-film samples fabricated by solution-based methods together with ab initio electronic structure calculations. Electronic structure measurements indicate that the Co states lie close to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2008-08, Vol.78 (8), p.085319, Article 085319
Hauptverfasser: Iuşan, Diana, Knut, Ronny, Sanyal, Biplab, Karis, Olof, Eriksson, Olle, Coleman, Victoria A., Westin, Gunnar, Wikberg, J. Magnus, Svedlindh, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present results of electronic structure and magnetization measurements of Co:ZnO and Co:ZnO codoped with Al thin-film samples fabricated by solution-based methods together with ab initio electronic structure calculations. Electronic structure measurements indicate that the Co states lie close to the valence-band edge with pinning of the Fermi level primarily due to native defects yielding a heavily n-doped material. The findings in the electronic structure measurements are corroborated by results from theoretical calculations. We find that it is necessary to go beyond the local-density approximation to achieve agreement with experiments. Moreover, the theoretical calculations indicate a tendency for the formation of Co clusters, giving rise to an antiferromagnetic exchange interaction between the Co atoms. The magnetization measurements are well in line with the theoretical predictions, showing a dominating superparamagnetic behavior arising from small antiferromagnetic clusters containing uncompensated spins.
ISSN:1098-0121
1550-235X
1550-235X
DOI:10.1103/PhysRevB.78.085319