Multilinear pseudo differential operators beyond Calderon-Zygmund theory

We consider two types of multilinear pseudodifferential operators. First, we prove the boundedness of multilinear pseudodifferential operators with symbols which are only measurable in the spatial variables in Lebesgue spaces. These results generalise earlier work of the present authors concerning l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2014-06, Vol.414 (1), p.149
Hauptverfasser: Michalowski, Nicholas, Rule, David, Staubach, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider two types of multilinear pseudodifferential operators. First, we prove the boundedness of multilinear pseudodifferential operators with symbols which are only measurable in the spatial variables in Lebesgue spaces. These results generalise earlier work of the present authors concerning linear pseudo-pseudodifferential operators. Secondly, we investigate the boundedness of bilinear pseudodifferential operators with symbols in the Hormander S-p,delta(m) classes. These results are new in the case p < 1, that is, outwith the scope of multilinear Calderon-Zygmund theory. (C) 2014 Elsevier Inc. All rights reserved.
ISSN:1096-0813
0022-247X
DOI:10.1016/j.jmaa.2013.12.062