High-Speed Kinetic Energy Buffer: Optimization of Composite Shell and Magnetic Bearings

This paper presents the design and optimization of a high-speed (30 000 r/min) kinetic energy storage system. The purpose of the device is to function as an energy buffer storing up to 867 Wh, primarily for utility vehicles in urban traffic. The rotor comprises a solid composite shell of carbon and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2014-06, Vol.61 (6), p.3012-3021
Hauptverfasser: Abrahamsson, Johan, Hedlund, Magnus, Kamf, Tobias, Bernhoff, Hans
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the design and optimization of a high-speed (30 000 r/min) kinetic energy storage system. The purpose of the device is to function as an energy buffer storing up to 867 Wh, primarily for utility vehicles in urban traffic. The rotor comprises a solid composite shell of carbon and glass fibers in an epoxy matrix, constructed in one curing. The shell is optimized using a combined analytical and numerical approach. The radial stress in the shell is kept compressive by integrating the electric machine, thereby avoiding delamination. Radial centering is achieved through eight active electromagnetic actuators. The actuator geometry is optimized using a direct coupling between SolidWorks, Comsol, and Matlab for maximum force over resistive loss for a given current density. The optimization results in a system with 300% higher current stiffness than the reference geometry with constant flux area, at the expense of 33% higher power loss. The actuators are driven by semipassive H bridges and controlled by an FPGA. Current control at 20 kHz with a noise of less than 5 mA (95% CI) is achieved, allowing position control at 4 kHz to be implemented.
ISSN:0278-0046
1557-9948
1557-9948
DOI:10.1109/TIE.2013.2259782