De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis

De novo assembly of RNA-seq data enables researchers to study transcriptomes without the need for a genome sequence; this approach can be usefully applied, for instance, in research on 'non-model organisms' of ecological and evolutionary importance, cancer samples or the microbiome. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature protocols 2013-08, Vol.8 (8), p.1494-1512
Hauptverfasser: Haas, Brian J, Papanicolaou, Alexie, Yassour, Moran, Grabherr, Manfred, Blood, Philip D, Bowden, Joshua, Couger, Matthew Brian, Eccles, David, Li, Bo, Lieber, Matthias, MacManes, Matthew D, Ott, Michael, Orvis, Joshua, Pochet, Nathalie, Strozzi, Francesco, Weeks, Nathan, Westerman, Rick, William, Thomas, Dewey, Colin N, Henschel, Robert, LeDuc, Richard D, Friedman, Nir, Regev, Aviv
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:De novo assembly of RNA-seq data enables researchers to study transcriptomes without the need for a genome sequence; this approach can be usefully applied, for instance, in research on 'non-model organisms' of ecological and evolutionary importance, cancer samples or the microbiome. In this protocol we describe the use of the Trinity platform for de novo transcriptome assembly from RNA-seq data in non-model organisms. We also present Trinity-supported companion utilities for downstream applications, including RSEM for transcript abundance estimation, R/Bioconductor packages for identifying differentially expressed transcripts across samples and approaches to identify protein-coding genes. In the procedure, we provide a workflow for genome-independent transcriptome analysis leveraging the Trinity platform. The software, documentation and demonstrations are freely available from http://trinityrnaseq.sourceforge.net . The run time of this protocol is highly dependent on the size and complexity of data to be analyzed. The example data set analyzed in the procedure detailed herein can be processed in less than 5 h.
ISSN:1754-2189
1750-2799
1750-2799
DOI:10.1038/nprot.2013.084