Magnetic self-organized atomic laminate from first principles and thin film synthesis
The first experimental realization of a magnetic M(n+1)AX(n) (MAX) phase, (Cr(0.75)Mn(0.25))(2)GeC, is presented, synthesized as a heteroepitaxial single crystal thin film, exhibiting excellent structural quality. This self-organized atomic laminate is based on the well-known Cr(2)GeC, with Mn, a ne...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2013-05, Vol.110 (19), p.195502-195502, Article 195502 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The first experimental realization of a magnetic M(n+1)AX(n) (MAX) phase, (Cr(0.75)Mn(0.25))(2)GeC, is presented, synthesized as a heteroepitaxial single crystal thin film, exhibiting excellent structural quality. This self-organized atomic laminate is based on the well-known Cr(2)GeC, with Mn, a new element in MAX phase research, substituting Cr. The compound was predicted using first-principles calculations, from which a variety of magnetic behavior is envisaged, depending on the Mn concentration and Cr/Mn atomic configuration within the sublattice. The analyzed thin films display a magnetic signal at room temperature. |
---|---|
ISSN: | 0031-9007 1079-7114 1079-7114 |
DOI: | 10.1103/PhysRevLett.110.195502 |