Boundary estimates for solutions to linear degenerate parabolic equations

Let Ω⊂Rn be a bounded NTA-domain and let ΩT=Ω×(0,T) for some T>0. We study the boundary behaviour of non-negative solutions to the equationHu=∂tu−∂xi(aij(x,t)∂xju)=0,(x,t)∈ΩT. We assume that A(x,t)={aij(x,t)} is measurable, real, symmetric and thatβ−1λ(x)|ξ|2≤∑i,j=1naij(x,t)ξiξj≤βλ(x)|ξ|2 for all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations 2015-10, Vol.259 (8), p.3577-3614
Hauptverfasser: Nyström, Kaj, Persson, Håkan, Sande, Olow
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Ω⊂Rn be a bounded NTA-domain and let ΩT=Ω×(0,T) for some T>0. We study the boundary behaviour of non-negative solutions to the equationHu=∂tu−∂xi(aij(x,t)∂xju)=0,(x,t)∈ΩT. We assume that A(x,t)={aij(x,t)} is measurable, real, symmetric and thatβ−1λ(x)|ξ|2≤∑i,j=1naij(x,t)ξiξj≤βλ(x)|ξ|2 for all (x,t)∈Rn+1,ξ∈Rn, for some constant β≥1 and for some non-negative and real-valued function λ=λ(x) belonging to the Muckenhoupt class A1+2/n(Rn). Our main results include the doubling property of the associated parabolic measure and the Hölder continuity up to the boundary of quotients of non-negative solutions which vanish continuously on a portion of the boundary. Our results generalize previous results of Fabes, Kenig, Jerison, Serapioni, see [18–20], to a parabolic setting.
ISSN:0022-0396
1090-2732
1090-2732
DOI:10.1016/j.jde.2015.04.028