Boundary estimates for solutions to linear degenerate parabolic equations
Let Ω⊂Rn be a bounded NTA-domain and let ΩT=Ω×(0,T) for some T>0. We study the boundary behaviour of non-negative solutions to the equationHu=∂tu−∂xi(aij(x,t)∂xju)=0,(x,t)∈ΩT. We assume that A(x,t)={aij(x,t)} is measurable, real, symmetric and thatβ−1λ(x)|ξ|2≤∑i,j=1naij(x,t)ξiξj≤βλ(x)|ξ|2 for all...
Gespeichert in:
Veröffentlicht in: | Journal of Differential Equations 2015-10, Vol.259 (8), p.3577-3614 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Ω⊂Rn be a bounded NTA-domain and let ΩT=Ω×(0,T) for some T>0. We study the boundary behaviour of non-negative solutions to the equationHu=∂tu−∂xi(aij(x,t)∂xju)=0,(x,t)∈ΩT. We assume that A(x,t)={aij(x,t)} is measurable, real, symmetric and thatβ−1λ(x)|ξ|2≤∑i,j=1naij(x,t)ξiξj≤βλ(x)|ξ|2 for all (x,t)∈Rn+1,ξ∈Rn, for some constant β≥1 and for some non-negative and real-valued function λ=λ(x) belonging to the Muckenhoupt class A1+2/n(Rn). Our main results include the doubling property of the associated parabolic measure and the Hölder continuity up to the boundary of quotients of non-negative solutions which vanish continuously on a portion of the boundary. Our results generalize previous results of Fabes, Kenig, Jerison, Serapioni, see [18–20], to a parabolic setting. |
---|---|
ISSN: | 0022-0396 1090-2732 1090-2732 |
DOI: | 10.1016/j.jde.2015.04.028 |