Drug loading and release of Tobramycin from hydroxyapatite coated fixation pins

This paper evaluates the loading and release properties of Tobramycin incorporated by adsorptive loading from a solution into plasma sprayed and biomimetically coated Hydroxyapatite (HA) fixation pins. The aim of this study is to contribute towards designing a functional implant surface offering loc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2013-09, Vol.24 (9), p.2265-2274
Hauptverfasser: Lilja, Mirjam, Sörensen, Jan Henrik, Brohede, Ulrika, Åstrand, Maria, Procter, Philip, Arnoldi, Jörg, Steckel, Hartwig, Strømme, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper evaluates the loading and release properties of Tobramycin incorporated by adsorptive loading from a solution into plasma sprayed and biomimetically coated Hydroxyapatite (HA) fixation pins. The aim of this study is to contribute towards designing a functional implant surface offering local release of the antibiotic agent to prevent post-surgical infections. Cathodic arc deposition is used to coat stainless steel fixation pins with a bioactive, anatase phase dominated, TiO 2 coating onto which a HA layer is grown biomimetically. The loading and release properties are evaluated by studying the subsequent release of Tobramycin using high performance liquid chromatography and correlated to the differences in HA coating microstructure and the physical conditions under loading. The results from these studies show that a dual loading strategy consisting of a solution temperature of 90 °C and a pressure of 6 bar during a loading time of 5 min release a sufficient amount of Tobramycin to guarantee the inhibition of Staphylococcus aureus up to 2 days for plasma sprayed HA coatings and for 8 days for biomimetic coatings. The present study emphasizes the advantages of the nanoporous structure of biomimetically deposited HA over the more dense structure of plasma sprayed HA coatings in terms of antibiotic incorporation and subsequent sustained release and provides a valuable outline for the design of implant surfaces aiming for a fast-loading and controlled, local drug administration.
ISSN:0957-4530
1573-4838
1573-4838
DOI:10.1007/s10856-013-4979-1