Iterative Methods for Pricing American Options under the Bates Model

We consider the numerical pricing of American options under the Bates model which adds log-normally distributed jumps for the asset value to the Heston stochastic volatility model. A linear complementarity problem (LCP) is formulated where partial derivatives are discretized using finite differences...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia computer science 2013, Vol.18, p.1136-1144
Hauptverfasser: Salmi, Santtu, Toivanen, Jari, von Sydow, Lina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the numerical pricing of American options under the Bates model which adds log-normally distributed jumps for the asset value to the Heston stochastic volatility model. A linear complementarity problem (LCP) is formulated where partial derivatives are discretized using finite differences and the integral resulting from the jumps is evaluated using simple quadrature. A rapidly converging fixed point iteration is described for the LCP, where each iterate requires the solution of an LCP. These are easily solved using a projected algebraic multigrid (PAMG) method. The numerical experiments demonstrate the efficiency of the proposed approach. Furthermore, they show that the PAMG method leads to better scalability than the projected SOR (PSOR) method when the discretization is refined.
ISSN:1877-0509
1877-0509
DOI:10.1016/j.procs.2013.05.279