Conventional versus reference-surface mass balance
Glacier surface mass balance evaluated over the actual glacier geometry depends not only on climatic variations, but also on the dynamic adjustment of glacier geometry. Therefore, it has been proposed that reference-surface balances calculated over a constant glacier hypsometry are better suited for...
Gespeichert in:
Veröffentlicht in: | Journal of glaciology 2012-01, Vol.58 (208), p.278-286 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glacier surface mass balance evaluated over the actual glacier geometry depends not only on climatic variations, but also on the dynamic adjustment of glacier geometry. Therefore, it has been proposed that reference-surface balances calculated over a constant glacier hypsometry are better suited for climatic interpretation. Here we present a comparison of 82 year modelled time series (1926-2008) of conventional and reference-surface balance for 36 Swiss glaciers. Over this time period the investigated glaciers have lost 22% of their area, and ice surface elevation close to the current glacier terminus has decreased by 78 m on average. Conventional balance in the last decade, at −0.91 mw.e.a-1, is 0.14 m w.e. a-1 less negative than the reference-surface balance. About half of the negative (stabilizing) feedback on mass balance due to glacier terminus retreat is compensated by more negative mass balances due to surface lowering. Short-term climatic variability is clearly reflected in the conventional mass-balance series; however, the magnitude of the long-term negative trend is underestimated compared to that found in the reference-surface balance series. Both conventional and reference-surface specific balances show large spatial variability among the 36 glaciers. |
---|---|
ISSN: | 0022-1430 1727-5652 1727-5652 |
DOI: | 10.3189/2012JoG11J216 |