New Approach to Quantum Scattering Near the Lowest Landau Threshold for a Schrödinger Operator with a Constant Magnetic Field

For a fixed magnetic quantum number m results on spectral properties and scattering theory are given for the three-dimensional Schrodinger operator with a constant magnetic field and an axisymmetrical electric potential V. Asymptotic expansions for the resolvent of the Hamiltonian H m = H om + V are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Few-body systems 2002-06, Vol.32 (1-2), p.1-22
1. Verfasser: Melgaard, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a fixed magnetic quantum number m results on spectral properties and scattering theory are given for the three-dimensional Schrodinger operator with a constant magnetic field and an axisymmetrical electric potential V. Asymptotic expansions for the resolvent of the Hamiltonian H m = H om + V are deduced as the spectral parameter tends to the lowest Landau threshold E 0. In particular it is shown that E 0 can be an eigenvalue of H m. Furthermore, asymptotic expansions of the scattering matrix associated with the pair (H m , H om) are derived as the energy parameter tends to E 0. [PUBLICATION ABSTRACT]
ISSN:0177-7963
1432-5411
1432-5411
DOI:10.1007/s00601-001-0077-x