New Approach to Quantum Scattering Near the Lowest Landau Threshold for a Schrödinger Operator with a Constant Magnetic Field
For a fixed magnetic quantum number m results on spectral properties and scattering theory are given for the three-dimensional Schrodinger operator with a constant magnetic field and an axisymmetrical electric potential V. Asymptotic expansions for the resolvent of the Hamiltonian H m = H om + V are...
Gespeichert in:
Veröffentlicht in: | Few-body systems 2002-06, Vol.32 (1-2), p.1-22 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a fixed magnetic quantum number m results on spectral properties and scattering theory are given for the three-dimensional Schrodinger operator with a constant magnetic field and an axisymmetrical electric potential V. Asymptotic expansions for the resolvent of the Hamiltonian H m = H om + V are deduced as the spectral parameter tends to the lowest Landau threshold E 0. In particular it is shown that E 0 can be an eigenvalue of H m. Furthermore, asymptotic expansions of the scattering matrix associated with the pair (H m , H om) are derived as the energy parameter tends to E 0. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0177-7963 1432-5411 1432-5411 |
DOI: | 10.1007/s00601-001-0077-x |