Solutions to quasi-relativistic multi-configurative Hartree–Fock equations in quantum chemistry
We establish the existence of infinitely many distinct solutions to the multi-configurative Hartree–Fock type equations for N -electron Coulomb systems with quasi-relativistic kinetic energy − α − 2 Δ x n + α − 4 − α − 2 for the n th electron. Finitely many of the solutions are interpreted as excite...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2012, Vol.75 (1), p.384-404 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish the existence of infinitely many distinct solutions to the multi-configurative Hartree–Fock type equations for
N
-electron Coulomb systems with quasi-relativistic kinetic energy
−
α
−
2
Δ
x
n
+
α
−
4
−
α
−
2
for the
n
th electron. Finitely many of the solutions are interpreted as excited states of the molecule. Moreover, we prove the existence of a ground state. The results are valid under the hypotheses that the total charge
Z
tot
of
K
nuclei is greater than
N
−
1
and that
Z
tot
is smaller than a critical charge
Z
c
. The proofs are based on a new application of the Lions–Fang–Ghoussoub critical point approach to nonminimal solutions on a complete analytic Hilbert–Riemann manifold, in combination with density operator techniques. |
---|---|
ISSN: | 0362-546X 1873-5215 1873-5215 |
DOI: | 10.1016/j.na.2011.08.038 |