p$$ -Harmonic functions in the Heisenberg group: boundary behaviour in domains well-approximated by non-characteristic hyperplanes

n this paper we study, for given p, 1 < p < 8, the boundary behaviour of non-negative p-harmonic functions in the Heisenberg group H-n, i.e., we consider weak solutions tothe non-linear and potentially degenerate partial differential equation Sigma (2n)(i=1) Xi (vertical bar Xu vertica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2013-09, Vol.357 (1), p.307-353
1. Verfasser: Nyström, Kaj
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:n this paper we study, for given p, 1 < p < 8, the boundary behaviour of non-negative p-harmonic functions in the Heisenberg group H-n, i.e., we consider weak solutions tothe non-linear and potentially degenerate partial differential equation Sigma (2n)(i=1) Xi (vertical bar Xu vertical bar(p-2) X(i)u) = 0 where the vector fields X1, ... , X-2n form a basis for the space of left-invariant vector fields on Hn. In particular, we introduce a set of domains Omega subset of H-n which we refer to asdomains well-approximated by non-characteristic hyperplanes and in Omega we prove, for 2 <= p < infinity, the boundary Harnack inequality as well as the Holder continuity for ratios of positive p-harmonic functions vanishing on a portion of partial derivative Omega
ISSN:0025-5831
1432-1807
1432-1807
DOI:10.1007/s00208-013-0896-3