p$$ -Harmonic functions in the Heisenberg group: boundary behaviour in domains well-approximated by non-characteristic hyperplanes
n this paper we study, for given p, 1 < p < 8, the boundary behaviour of non-negative p-harmonic functions in the Heisenberg group H-n, i.e., we consider weak solutions tothe non-linear and potentially degenerate partial differential equation Sigma (2n)(i=1) Xi (vertical bar Xu vertica...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2013-09, Vol.357 (1), p.307-353 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | n this paper we study, for given p, 1 < p < 8, the boundary behaviour of non-negative p-harmonic functions in the Heisenberg group H-n, i.e., we consider weak solutions tothe non-linear and potentially degenerate partial differential equation Sigma (2n)(i=1) Xi (vertical bar Xu vertical bar(p-2) X(i)u) = 0 where the vector fields X1, ... , X-2n form a basis for the space of left-invariant vector fields on Hn. In particular, we introduce a set of domains Omega subset of H-n which we refer to asdomains well-approximated by non-characteristic hyperplanes and in Omega we prove, for 2 <= p < infinity, the boundary Harnack inequality as well as the Holder continuity for ratios of positive p-harmonic functions vanishing on a portion of partial derivative Omega |
---|---|
ISSN: | 0025-5831 1432-1807 1432-1807 |
DOI: | 10.1007/s00208-013-0896-3 |