A boundary estimate for non-negative solutions to Kolmogorov operators in non-divergence form

We consider non-negative solutions to a class of second-order degenerate Kolmogorov operators of the form where z  = ( x , t ) belongs to an open set , and 1 ≤ m  ≤ N . Let , let K be a compact subset of , and let be such that . We give sufficient geometric conditions for the validity of the followi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annali di matematica pura ed applicata 2012, Vol.191 (1), p.1-23
Hauptverfasser: Cinti, Chiara, Nyström, Kaj, Polidoro, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider non-negative solutions to a class of second-order degenerate Kolmogorov operators of the form where z  = ( x , t ) belongs to an open set , and 1 ≤ m  ≤ N . Let , let K be a compact subset of , and let be such that . We give sufficient geometric conditions for the validity of the following Carleson type estimate. There exists a positive constant C K , depending only on and on , such that for every non-negative solution u of in Ω such that .
ISSN:0373-3114
1618-1891
1618-1891
DOI:10.1007/s10231-010-0172-z