Regularity and free boundary regularity for the p-Laplace operator in Reifenberg flat and Ahlfors regular domains

In this paper we solve several problems concerning regularity and free boundary regularity, below the continuous threshold, for positive solutions to the p 1 < p < \infty \Omega \subset \mathbf {R}^{n}, n \geq 2, is a positive p \Omega \cap B (w, 4r) \partial \Omega \cap B (w, 4r) \nabla u (x)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Mathematical Society 2012-09, Vol.25 (3), p.827-862
Hauptverfasser: John L. Lewis, ö
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we solve several problems concerning regularity and free boundary regularity, below the continuous threshold, for positive solutions to the p 1 < p < \infty \Omega \subset \mathbf {R}^{n}, n \geq 2, is a positive p \Omega \cap B (w, 4r) \partial \Omega \cap B (w, 4r) \nabla u (x) \to \nabla u (y) x \rightarrow y \in \partial \Omega \cap B (w, 4r), on \partial \Omega \cap B (w, 4 r). \log \vert \nabla u \vert \partial \Omega \cap B (w, r) \Vert \log \vert \nabla u \vert\Vert _{\textup {BMO} (\partial \Omega \cap B(w, r))} \leq c is Reifenberg flat with vanishing constant and n\in \textup {VMO}(\partial \Omega \cap B(w, 4r)) denotes the unit inner normal to \partial \Omega \log \vert \nabla u \vert \in \textup {VMO}(\partial \Omega \cap B(w, r)) is as in Theorem 1, \log \vert \nabla u \vert \in \textup {VMO}(\partial \Omega \cap B(w, r)) \partial \Omega \cap B (w, r) (\delta , r_0) \bar \delta = \bar \delta (p, n) 0 < \delta \leq \bar \delta , \partial \Omega \cap B(w, r/2) n\in \textup {VMO}(\partial \Omega \cap B(w, r/2))
ISSN:0894-0347
1088-6834
1088-6834
DOI:10.1090/S0894-0347-2011-00726-1