Regularity and free boundary regularity for the p-Laplace operator in Reifenberg flat and Ahlfors regular domains
In this paper we solve several problems concerning regularity and free boundary regularity, below the continuous threshold, for positive solutions to the p 1 < p < \infty \Omega \subset \mathbf {R}^{n}, n \geq 2, is a positive p \Omega \cap B (w, 4r) \partial \Omega \cap B (w, 4r) \nabla u (x)...
Gespeichert in:
Veröffentlicht in: | Journal of the American Mathematical Society 2012-09, Vol.25 (3), p.827-862 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we solve several problems concerning regularity and free boundary regularity, below the continuous threshold, for positive solutions to the p 1 < p < \infty \Omega \subset \mathbf {R}^{n}, n \geq 2, is a positive p \Omega \cap B (w, 4r) \partial \Omega \cap B (w, 4r) \nabla u (x) \to \nabla u (y) x \rightarrow y \in \partial \Omega \cap B (w, 4r), on \partial \Omega \cap B (w, 4 r). \log \vert \nabla u \vert \partial \Omega \cap B (w, r) \Vert \log \vert \nabla u \vert\Vert _{\textup {BMO} (\partial \Omega \cap B(w, r))} \leq c is Reifenberg flat with vanishing constant and n\in \textup {VMO}(\partial \Omega \cap B(w, 4r)) denotes the unit inner normal to \partial \Omega \log \vert \nabla u \vert \in \textup {VMO}(\partial \Omega \cap B(w, r)) is as in Theorem 1, \log \vert \nabla u \vert \in \textup {VMO}(\partial \Omega \cap B(w, r)) \partial \Omega \cap B (w, r) (\delta , r_0) \bar \delta = \bar \delta (p, n) 0 < \delta \leq \bar \delta , \partial \Omega \cap B(w, r/2) n\in \textup {VMO}(\partial \Omega \cap B(w, r/2)) |
---|---|
ISSN: | 0894-0347 1088-6834 1088-6834 |
DOI: | 10.1090/S0894-0347-2011-00726-1 |